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Abstract
Stellar magnetic fields and the processes which lead to their production are subject
of current research. The aim of this thesis is to test a scaling law which describes
the magnetic field strength of stars with convective zones. This scaling law is only
applicable to stars which are fast rotating, i.e. their field is saturated and therefore
not dependent on rotation rate. The analysis is done with Modules for Experiments
in Stellar Astrophysics (MESA), which provides a powerful one- dimensional stellar
evolution code. The result of this thesis is that dynamos of high mass stars (M &
1.0 M�) can produce magnetic fields with energy densities which are weaker than
fields in low mass stars (M . 0.6 M�) by a factor of three to four.

Keywords: stellar physics, magnetic fields, geodynamos, scaling law, MESA

Zusammenfassung
Magnetfelder von Sternen und die Prozesse, welche zu ihrer Erzeugung führen, sind
Themen aktueller Forschung. Das Ziel dieser Arbeit ist es, ein Skalierungsgesetz
zu testen, das die Magnetfeldstärke von Sternen mit konvektiven Zonen beschreibt.
Dieses Skalierungsgesetz ist nur anwendbar auf Sterne, welche schnell rotieren, d.h.
ein gesättigtes und damit von der Rotationsperiode unabhängiges Magnetfeld besit-
zen. Die Analyse wird mit MESA durchgeführt, einer Code-Bibliothek, welche einen
mächtigen Sternentwicklungs-Code bereitstellt. Das Ergebnis dieser Arbeit ist, dass
massive Sterne (M & 1.0 M�) magnetische Felder mit Energiedichten produzieren
können, welche um einen Faktor drei bis vier schwächer sind als Felder von eher
leichten Sternen (M . 0.6 M�) liegen.

Stichwörter: stellare Physik, Magnetfelder, Geodynamos, Skalierungsgesetz, ME-
SA
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Nomenclature

Bold Letters, such as E refer to the corresponding vector quantities.

Latin Letters

variable meaning unit

E Electrical field strength V/m = m kg/s3A

B Magnetic flux density T = kg/s2A

J Electrical current density A/m2

u Velocity m/s

g Gravitational acceleration m/s2

H Scale height m
q Energy flux W/m2 = kg/s3

cp Specific heat capacity at constant pressure J/Kkg = m2/K s2

l Length scale m
Emag Magnetic energy density J/m3

F Efficiency factor of field production 1
Fr Radial dependent effiency factor 1
r Radius m
R Fixed radius of a planet or star m
V Volume m3

M Mass kg

Greek Letters

variable meaning unit

α Thermal expansivity coefficient 1/K
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Nomenclature

variable meaning unit

µ0 Magnetic permeability of vacuum 4π×10−7 N/A2[= kgm/s2A2]
ε0 Permittivity of vacuum 8.854 × 10−12 C2/Nm2[=

A2s4/kgm3]
ρe Electrical charge density C/m3 = As/m3

ρ Mass density kg/m3

σ Electrical conductivity 1/Ωm = A2s/m3kg

τ Time scale s
η Magnetic diffusivity m2/s

ν Kinematic viscosity m2/s

κ Thermal diffusivity m2/s

Ω Rotation frequency 1/s

αMLT Mixing-length parameter 1

Indices

index meaning

c Convective
T Temperature
p Pressure
mag Magnetic
� Sun
0 At the surface

Abbreviations

abbreviation meaning

LHS Left Hand Side
MESA Modules for Experiments in Stellar Astrophysics
MHD Magnetohydrodynamics
RHS Right Hand Side
r.m.s. Root mean squared
EOS Equation of state
yrs Years
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1 Introduction

Magnetic fields are ubiquitious in space. They can be observed in nearly all as-
tronomic objects such as galaxies, interstellar clouds, stars, planets, etc. Although
they are ubiquitious, the knowledge about their generation is quite small and comes
at most from the analysis of our sun. It is believed that the magnetic fields in the
celestial bodies we observe mainly come from electromagnetic processes called dy-
namo effect. The equations which lead these processes are well known but solving
them is still very difficult and needs sophisticated dynamo simulations. Especially
on this field huge progress has been made in the last decades. [4]
An important part in a comprehensive dynamo theory is a well-established scaling

law which makes predictions about the magnetic field by calculating fundamental
properties of the star or the region where dynamo is operating, respectively [5].
It would be a big step towards full understanding of the underlying processes of
dynamo theory if a scaling theory was found which predicts magnetic field strengths
for a wide range of celestial bodies. Good progress on this field was made by [8] who
found a scaling law which was valid for planets as well as for low mass stars. The
aim of this thesis is to evaluate if this law might also be valid for larger stars.
Within the last century huge efforts have been made in understanding stellar

interiors (e.g. [14]). The gowing computer power also supported this field since
simulations of stellar structure got more and more sophisticated over the past 20
years. [14]
A relatively new, powerful method to study stellar interiors is given with the

code suite Modules for Experiments in Stellar Astrophysics (MESA) which gives
open source, robust, efficient, thread-safe libraries for a wide range of applications
in computational stellar astrophysics. A key feature of this code suite is the model
MESA star which is a one-dimensional stellar evolution code. The whole capabilities
of MESA are described in [17–19].

In chapter 2 I explain the mechanisms of how stellar magnetic fields are produced
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1 Introduction

and how the magnetic fields can be described by few quantities of a star according
to different scaling laws.
In Chapter 3 I provide the methods how I approached the problem using the

stellar evolution code MESA star and which parameters were used.
The results I obtained from this numerical approach are presented in chapter 4.

I provide the quantities which are computed by the MESA star code as well as the
magnetic energy densities which are computed according to the scaling law and
compare these magnetic fields to data from observations collected in [23].
The results are discussed in chapter 5. The thesis is concluded in chapter 6.
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2 Theoretical Foundations

In this chapter I present the fundamental equations and concepts to give a basic
understanding where stellar magnetic fields come from and how they are structured.
For this purpose I describe the mechanisms according to which stellar dynamos work,
how the dynamo mechanisms in solar-like and cool stars differ and how rotational
velocity influences the magnetic field strength in section 2.1. In section 2.2 I present
the governing quations in Magnetohydrodynamics (MHD) and I introduce the most
common dimensionless numbers which are used to describe the regimes in the stellar
interiors and to control dynamo models. Section 2.3 treats different scaling laws for
magnetic fields, how they are motivated and when they are applicable.

2.1 Stellar Dynamos

Stellar magnetic fields are mostly generated in convective zones of the star and result
from complex mechnisms which occur in the moving plasma. These mechanisms are
called solar (or in general stellar) dynamo. There is a good understanding how the
dynamo in the Sun works since there are many data for this star, but anyhow it is
difficult to measure magnetic fields from stars different than the Sun, therefore the
generation processes of non solar-like stars are far from being understood. [23]

2.1.1 Convective zones of stars

The main difference in the structure of the Sun and cooler or hotter stars with
respect to magnetic field generation is shown in figure 2.1. Stars of spectral type
early-M, K, G and late-F have convective envelopes where the dynamo action takes
place. Hotter stars (like A and B-stars) have a very thin or no outer convective zone,
but a convective core which is larger for hotter stars. Cooler stars, like spectral type
M3.5 and later are fully convective meaning that they lack the so called tachocline,
the transition region between convective and radiative zone which is the place where
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2 Theoretical Foundations

B
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M

Figure 2.1: Schematic representatation of convective zones in stars
Grey regions represent convective, white regions radiative zones. The letter repre-
sents the spectral type. Neither star size nor size of convective zones are to scale.
Graphic was made according to [4, p. 188].

stellar dynamo is supposed to be most efficient. For this reason the dynamo efficiency
is expected to change dramatically between M3 and M4 stars.
Yet fully convective stars (i.e. stars with M ≤ 0.35M�) show stronger (by one

order of magnitude) global magnetic fields than the Sun (e.g.[22]). This leads to the
assumption that these stars have a different dynamo mechanism. [4, 8, 23]

2.1.2 α- and Ω-effect

Figure 2.2: Visualisation of Ω- and α-effect
For explanations see section 2.1.2. The graphic is taken from [2].

The process of field amplification is an interplay between convective motion and
differential rotation. The originally poloidal (i.e. in the direction of the rotation
axis, see figure 2.2, top, left) magnetic field is wind around the equator while the
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2.2 Fundamental equations of Magnetohydrodynamics

flux lines are stretched and therefore strengthened. So, a toroidal field is produced.
This process is called Ω-effect.
A toroidal field can be transformed into a poloidal field via the α-effect (figure 2.2,

bottom). Due to convective and turbulent motions the flux lines rise upwards, twist
and finally produce small scale poloidal fields. If the small scale fields connect, a
large scale poloidal field can form. When those small scale flux ropes come to the
surface the sunspots occur, i.e. areas on the surface which show a very high magnetic
activity.
In stars with a tachocline, e.g. the Sun, a combination of the two effects provide

dynamo action with the 11-year-long solar cycle, which means that magnetic activity
of the star (measured by the number of sunspots) increases and decreases within a
period of 22 years.
In planetary dynamos and dynamos of fully convective stars it is assumed that

so called α2 dynamos take place, which regenerate both the poloidal and toroidal
magnetic fields entirely via the inductive action of small-scale turbulence as there
are no shear flows which amplify the Ω-effect . [4, chapter 3.2]

2.1.3 Saturated fields

As sketched in section 2.1.2 rotation is essential for the function of the stellar dy-
namo, independent from the sort of the dynamo. A measure for the rotation time
is the nondimensional Rossby number (2.15) (see section 2.2.2). [23] Observations
show that the activity of stars saturate at low Rossby numbers (i.e. rotation periods
which are small compared to convective timescales) [21].
Although magnetic flux and star activity are strongly connected (e.g. [15]) it is not

clear from activity saturation that the magnetic flux also saturates. However through
direct field measurements of M dwarfs there is evidence that the field saturates, too.
[25]

2.2 Fundamental equations of
Magnetohydrodynamics

When dealing with magnetic fields in stars, one has to be familiar with the science
of electrically conducting fluids which induce magnetic fields. This field of study
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2 Theoretical Foundations

which connects fluid dynamics and electromagnetism is called magnetohydrodynam-
ics (MHD).

2.2.1 Basic set of equations

Induction equation. The electromagnetism is described by Maxwell’s equations
that can be written in differential form as (in SI units)

∇ · E = ρe

ε0
(2.1)

∇× E = −∂B
∂t

(2.2)

∇ ·B = 0 (2.3)

∇×B = µ0J + µ0ε0
∂E
∂t
. (2.4)

In equation (2.4) the displacement current ∂E
∂t

can be ignored if the velocities are
non-relativistic, therefore equation (2.4) reduces to

∇×B = µ0J. (2.5)

Together with Ohm’s law

J = σ(E + u×B) (2.6)

and equation (2.2) this yields the magnetohydrodynamic induction equation

∂B
∂t

= ∇× (u×B− η∇×B) (2.7)

with η = 1
µ0σ

, the magnetic diffusivity. The induction equation describes the behav-
ior of the magnetic field. The terms on the RHS denote the induction of the moving
fluid and the dissipation of the currents which sustain the field. [4, chapter 1.3]

Equation of motion. The base for the equation of motion is the Navier-Stokes
equation

Du
Dt = −1

ρ
∇p+ 1

ρ
∇ · ε, (2.8)
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2.2 Fundamental equations of Magnetohydrodynamics

where the operator D
Dt denotes the Lagrangian derivative ∂

∂t
+ u · ∇, which is the

variation alongside the moving fluid elements. ε is the viscuos stress tensor which
describes the viscous forces acting on a fluid element.
The other forces which also act on the fluid element are added to the RHS of

equation (2.8), namely Coriolis force (if the equation is written down in a reference
frame moving with the rotating star), buoyancy force and Lorentz force, so that the
equation is

Du
Dt = ∂u

∂t
+ (u · ∇)u = −1

ρ
∇p− 2Ω× u + α∆Tg + 1

ρ
(J×B) + 1

ρ
∇ · ε. (2.9)

The Lorentz force J × B is taken in its MHD approximation, where electrostatic
forces are neglected. [4, chapter 1.2]

2.2.2 Nondimensional numbers

In order to describe the equations from section 2.2.1 in a nondimensional form,
there are several nondimensional parameters which represent ratios of quantities
appearing in these equations, i.e. forces in the equation of motion (2.9) and the
induction equation (2.7). Here I present the most important of those numbers
which are used in dynamo models as input and control parameters. [6, 11]

The magnetic Reynolds number

Rm = ulmag

η
(2.10)

is the ratio between magnetic induction and dissipation. It must be large enough
for a dynamo to be self-sustained. According to dynamo models the critical value is
about 50 [6]. lmag is a characteristic length scale for the magnetic field.

The Elsasser number

Λ = σB2

2ρΩ , (2.11)

describes the ratio between Lorentz and Coriolis force. It is used for scaling laws
(see section 2.3.1), since the two forces are assumed to be equal in magnetostropphic
force balance and therefore Λ should be one. In dynamo models the Elsasser number
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2 Theoretical Foundations

was in the range between 0.06 and 100 [6], therefore this number might not be a
good measure for the degree of force balance.

The Prandtl number

Pr = ν

κ
(2.12)

and the magnetic Prandtl number

Pm = ν

η
(2.13)

describe the relation of viscosities. The Prandtl numbers serve as control parameters
for dynamo models and are usually set to one but can vary by about one order of
magnitude if the Ekman number E = ν

Ωl2 is adapted.[6]

The Rayleigh number

Ra = α∆Tgl3c
νκ

(2.14)

which measures the ratio between buoyancy and viscous forces must be high enough
for convective motions to occur [35]. lc is the typical size of the convective structure
in the celestial body (i.e. the planet or star).

The Rossby number

Ro = 1
Ωτc

, (2.15)

where τc is the convective overturn time, i.e. the time scale for convective mo-
tions [12]. This number measures the importance of inertial forces and is a measure
for the magnetic activity of the star, i.e. the activity and magnetic field rise with
decreasing Ro. [23]

8



2.3 Scaling laws for the magnetic fields of planets and stars

2.3 Scaling laws for the magnetic fields of planets
and stars

There have been multiple attempts to describe the magnetic field of planets and
stars with a scaling law, which means that the magnetic field is approximated by
some basic properties of the planet or the star, respectively.
When data first showed magnetic fields in planets, also the first scaling laws

were proposed, e.g. the empirical magnetic Bode Law which assumes a dependency
between magnetic moment and angular momentum [27].

2.3.1 Elsasser number rule

More sophisticated scaling laws assume magnetostrophic force balances of the terms
in equation (2.9). A very basic scaling law is the Elsasser number rule assuming
that the Elsasser number Λ (2.11) is of the order of one leading to the scaling law
[32]

B2 ∝ ρΩ
σ
. (2.16)

The theoretical foundation for this is that rotation or magnetic field alone inhibit
convection, but the combination of the two effects would enhance the magnetic field,
therefore the two forces should be in a balance and Λ equilibrates at around one.
However – as mentioned in section 2.2.2 – dynamo models showed that Λ is varying
with input parameters such as Rm or E which is why the scaling law (2.16) might
not hold in general.

2.3.2 Energy flux scaling

Besides magnetostrophic force balance there are also scaling laws based on thermo-
dynamic considerations, in particular the amount of ohmic dissipation D = J · J/σ
as a fraction of the available heat flux per unit volume, which is qc/HT . With equa-
tion (2.5) the ohmic disspation becomes D = (∇ × B)2/(µ2

0σ) ∝ 2ηEmag/l
2
mag [7].

Therefore the magnetic energy density scales as

Emag = B2

2µ0
∝ fohm

l2mag

2η
qc
HT

, (2.17)
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2 Theoretical Foundations

where fohm is the fraction of ohmic dissipation to available convected heat flux. lmag

refers to the length scale on which variations of the magnetic field strength take
place. l2mag/2η is proportional to the dissipation time τη. [7] found out that τη scales
with the inverse of the magnetic Reynolds number Rm from equation (2.10), i.e.
τη ∝ l2mag/ηRm = lmag/u. Together this yields the scaling law

B2

2µ0
= cfohm

lmag

u

qc
HT

. (2.18)

For u there are several scaling rules, based on different mechanisms. The first rule
is based on the magnetostrophic force balance between Coriolis and buoyancy force,
i.e. the second and third term on the RHS of equation (2.9), therefore

αg∆T ∝ Ωu. (2.19)

The convected heat flux which is transported due to temperature differences ∆T
can be written as

qc ∝ ρcpu∆T, (2.20)

therefore replacing ∆T in (2.19) and introducing the temperature scale height

HT = cp/αg (2.21)

for the temperature scale height the convective velocity scales as [31]

u =
(

qc
ΩρHT

)1/2

. (2.22)

The second rule considered here is based on the mixing length theory ( section 3.1).
Balancing the nonlinear inertia term (second term of the Lagrangian derivative on
the LHS from equation (2.9)) with the buoyancy term (third term on RHS of (2.9))
and assuming the mixing length lm for the length scale of the spatial derivatives
of the inertia term yields u2/lm ∝ αg∆T which together with equations (2.20) and
(2.21) leads to the velocity scaling rule

u =
(
qclm
HTρ

)1/3

. (2.23)

10



2.3 Scaling laws for the magnetic fields of planets and stars

These two velocity scaling rules together with the scaling rule (2.18) yield the two
scaling laws [31]

B2

2µ0
∝ lmagfohm

(
Ωρqc
HT

)1/2

(2.24)

for velocity scaling according to equation (2.22) and [6]

B2

2µ0
∝ fohm

(
qc
lmag

HT

)2/3

ρ1/3, (2.25)

respectively.
Since the quantities in equation (2.25) change within the radius of the dynamo

an efficiency factor F is introduced via averaging the varying quantities over the
convective zone [8]. This efficiency factor is given by

F 2/3 = 1
V

R∫
ri

(
qc(r)
q0

lmag(r)
HT (r)

)2/3 (
ρ(r)
〈ρ〉

)1/3

4πr2dr, (2.26)

where ri denotes the inner radius of the dynamo region (in stars the inner radius
of the convective envelope, if there is one), V the volume of the dynamo region, q0

some reference flux for which the total energy flux at the outer boundary of the star
is taken and 〈ρ〉 the average density over the dynamo region. A usual value for the
length scale lmag is the pressure or density scale height Hp or Hρ, respectively.
The scaling law (2.25) becomes then

〈B2〉
2µ0

= c〈ρ〉1/3(Fq0)2/3, (2.27)

where c is a constant. [5]

2.3.3 Application of energy flux scaling to stars

The scaling law (2.25) was also applied to stars [8]. The results of this application
are shown in figure 2.3.3. As follows from equation (2.25) the scaling law is indepen-
dent of both the electrical conductivity (and therefore magnetic diffusivity) and the
rotation rate. This doesn’t mean that these parameters are completely unimportant
but they have to be in the right regime for the dynamo to work. According to (2.10)
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2 Theoretical Foundations

the diffusivity must be low enough for Rm to be supercritical and Ω must be large
in comparison to 1/τc so that the Rossby number (2.15) is in a regime where the
field is saturated.

Figure 2.3: Scaling law (2.25) applied to Earth, Jupiter and stars

The scale on the LHS shows magnetic energy density. The scale on the RHS shows
the measured r.m.s. field strength at the dynamo surface. For Earth and Jupiter
the value F is calculated based on estimations of the heat flux in the interior. For
stars F = 1 is assumed. Blue, red and pink denote different cool stars (T Tauri and
M stars), stars of 0.6 - 1.1 solar masses are shown in green for rotation periods P
> 10 d, yellow for 4 d < P < 10 d and orange for P < 4 d. The graphic is taken
from [8].
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3 Numerical approach

In this chapter I describe the procedure how convection is treated via the mixing-
length theory (section 3.1), how the stellar evolution code MESA star works (sec-
tion 3.2), how the magnetic energy densities according to equations (2.25)-(2.26)
are calculated (section 3.3) and how I varied parameters (section 3.4).

3.1 Mixing-length theory of convection

Energy transport by convection means that macroscopic mass elements (convective
elements) are transported from hotter to cooler regions because of differences in den-
sity. The hot elements cool down and thereby release their heat to the surrounding.
This process can be very efficient in stellar interiors due to the high density.
Due to the turbulent motions in stellar interiors it is very difficult to treat con-

vection in a theoretical way. There have been made large efforts in solving the
underlying hydrodynamical equations but still these numerical simulations are lim-
ited to certain time scales and only thin convection zones.
With the so called mixing-length theory by Ludwig Prandtl a theory exists which

provides a simple method for treating convection locally. The theory has been tested
with a three-dimensional numerical simulation of efficient convection which support
the validity of the assumptions the theory makes [3]. Empirical tests also show good
agreement of stellar models resulting from this theory with observations.
In a basic picture the theory is equivalent to molecular heat transfer where the

analogon to molecules are the convective elements and the analogon to the mean free
path is the mixing length lm. After the mixing-length the convective element mixes
with the surrounding. The advantage of this theory is that the only free parameter
is lm which is usually assumed to be in the order of the pressure scale height HP .
To be more precise, the parameter which is needed is the mixing length parameter
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3 Numerical approach

αMLT, defined by

lm = αMLTHP . (3.1)

αMLT is assumed to be of the order of 1. More reasonable values are obtained by
comparison of the effective temperature or radius of stellar models with observed
stars. From this method values between 1.5 and 2.0 are obtained. [14, chapter 7]

[10] present an empirical calibration of αMLT according to which it takes values
between 1.86 and 2.17 depending on calibration stars and assumed stellar metallicity.

3.2 MESA – Modules for Experiments in Stellar
Astrophysics

Modules for Experiments in Stellar Astrophysics (MESA) provides libraries for a wide
range of applications in stellar astrophysics. These libraries are independent from
each other and each library provides different aspects of the numerics and physics
which are necessary to compute models for stellar physics. MESA star is a stellar
evolution code which combines the capabilities of most of these modules in order
to solve the structure and composition equations in the interior of stars. [17] The
procedure how MESA star computes quantities inside the star are described in [17]:

[It] first reads the input files and initializes the physics modules to cre-
ate a nuclear reaction network and access the EOS and opacity data.
The specified starting model [...] is then loaded into memory, and the
evolution loop is entered.

The procedure for one timestep has four basic elements. First, it prepares
to take a new timestep by remeshing the model if necessary. Second, it
adjusts the model to reflect mass loss by winds or mass gain from accre-
tion, adjusts abundances for element diffusion, determines the convective
diffusion coefficients, and solves for the new structure and composition
using the Newton-Raphson solver. Third, the next timestep is estimated.
Fourth, output files are generated.
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3.3 Calculation of quantities

3.3 Calculation of quantities

My analysis basically consisted of two parts: the computation of stellar properties
via MESA star and the calculation of the desired properties according to section 2.3.

Computation of stellar properties. In a first step I prepared the computation
by giving input parameters for stellar mass, age, and mixing-length parameter. The
actual choice of these input parameters is described in section 3.4.

MESA star then computes stellar properties for every star according to the pro-
cedure described in section 3.2 and writes them into output files which are used in
further analysis.
The quantities which are important in my study are listed in table 3.1.

Quantity Symbol
Bolometric luminosity L
Convective velocity vc
Ratio of convective luminosity to bolometric Lumnosity Lc

L

Gravitational acceleration g
Pressure scale height Hp

Mass of shell dm
Radius r
Temperature T
Pressure p
Specific heat capacity cp
Density ρ
Shell thickness dr
Effective temperature Teff

Table 3.1: List of quantities provided by MESA star
Listed are the quantities which are needed in the analysis. The quantities above
the lower doubled line are spatial varying quantities, the quantity below is a value
which characterizes the model.

Calculation of desired quantities. The analysis of the data provided by MESA
star in order to test the scaling law (2.25) is done with python. The analysis
consists of four parts: reading data, preparation, integration, and output.
In a first step stellar structure is read from th MESA star output for every mass-

age-αMLT combination and stored into arrays. Some of these provided quantities are
shown in section 4.1.
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3 Numerical approach

The second step is the calculation of convection zone depths since the integration
in equation 2.26 only takes place in this zone. The convective zone is defined as
the regime where the convective flux (and therefore also the convective luminosity
Lc = qc4πr2) is nonzero. In low-mass stars (M < 3.5M�) this is the whole star, in
higher mass stars the number of the shell where the convective luminosity vanishes
has to be found.
In a next step several quantities which are not directly provided are calculated.

The first quantity is the temperature gradient ∂T
∂r

which is calculated via derivation
of the T (r) data from MESA star. The second is the temperature scale height which
makes use of the temperature gradient and is calculated via the equation

HT = T

∣∣∣∣∣∂T∂r
∣∣∣∣∣
−1

. (3.2)

The density scale height is calculated via HP and HT according to the equation [34]

Hρ = 1
1
HT

+ 1
Hp

. (3.3)

The next step is the calculation of the integrand in equation (2.26),

Fr(r) =
(
qc(r)
q0

lmag(r)
HT (r)

)2/3 (
ρ(r)
〈ρ〉

)1/3

(3.4)

for every star layer. As proposed in [8] I took Hρ as typical length scale lmag. The
average density 〈ρ〉 was computed by dividing the mass of the convective volume
Mc =

∫ R
ri

dm by its volume Vc = 4π
3 (R3 − r3

i ). Since Lc was provided instead of qc,
the equation (3.4) becomes

Fr(r) =
(
Lc(r)
L(R)

R2

r2
Hρ(r)
HT (r)

)2/3 (
ρ(r)4π

3 (R3 − r3
i )∫ R

ri
dm

)1/3

. (3.5)

The factor F is then obtained by calculating (cf. equation (2.26))

F =
(

3
4π(R3 − r3

i )

∫ R

ri

Fr(r)4πr2dr
)3/2

(3.6)

for every star (i.e. mass-age-αMLT combination). According to equation (2.27) the
mean magnetic energy densities at the dynamo surface are calculated in the next
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step and Fr(r), F and Emag = B2

2µ0
are stored for every star for further analysis.

3.4 Choice of parameters
The mass range of my analysis covered the range from M6 stars (0.1 M�) to F0
stars (1.55 M�). For every model I computed 9 different ages from 1 × 106 yrs to
1× 1010 yrs.
Since it is not well known which αMLT is appropriate (cf. section 3.1) I used a

range from 1.6 to 2.4 for this value.
Table 3.2 provides a list of assumed values for mass, age, and mixing-length

parameter.

M [M�] age [yrs] αMLT
0.1 0.11 0.12 0.13 0.15 0.19 1× 106 3× 106 1.6
0.2 0.22 0.25 0.27 0.3 0.35 1× 107 3× 107 1.8
0.4 0.5 0.6 0.7 0.8 0.9 1× 108 3× 108 2.0
1.0 1.1 1.2 1.3 1.4 1.5 1× 109 3× 109 2.2
1.55 1× 1010 2.4

Table 3.2: List of parameters used in the analysis
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4 Results

In this chapter I present the results from the computations made as described in
chapter 3.
First, in section 4.1 the quantities are shown as a function of radius which were

directly computed by MESA, namely temperature T , the ratio of convective energy
flux to bolometric flux qc/q0, and density ρ. Besides, the energy flux at the outer
boundary of the star and the average densities of convection zones are shown for
different models.
In section 4.2 the radial dependencies of the efficiency factors according to equa-

tion (3.5) and in section (4.3) the magnetic energy densities according to for-
mula (3.6) as a function of mass and age of the star as well as a function of spectral
type are shown .
In section 4.4 I compare the results with data collected in [23].

4.1 Provided quantities

4.1.1 Radial Profiles

Temperature

Figure 4.2 shows various temperature profiles for stars with different masses and
computed with different values for αMLT. Variations in the mixing lenth parameter
are hardly visible in these plots.
Variations in age do change the temperature profile in a quantitative way, i.e. the

temperatures are higher for older stars (the variation is about 10% in the core and
less in the outer regions). This difference is more visible for lower mass stars, i.e. M
stars.
The mass of the star has more influence onto the temperature profile. In principle

the temperature is higher for higher mass stars but the profile also changes qualita-
tively. While for M dwarfs the decrease of temperature is more or less linear, it is
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exponentially for stars with M & 1.0M�.
I also provided the effective temperatures Teff which are used to assign the models

to spectral types. The Teff ranges for certain mass ranges are provided in table 4.1.

Convective energy flux

The energy fllux profiles are shown in figure 4.3. I discriminate two qualitatively
different types: fully and partially convective stars (cf. section 2.1.1). The MESA
star results confirm the results that stars with M ≤ 0.35M� are fully convective
and larger stars have a convective envelope.
The ratio of convective zone width to star radius decreases with increasing mass

and increases with increasing age.
In stars with convective envelope there is also a convective core whose flux de-

creases with increasing age and decreasing mass. Since the magnetic field produced
in the convective cores is shielded by the radiative zone I neglect the convective
cores in the integration. Therefore the convective cores are not shown.
The mixing-length parameter αMLT influences the convection zone widths of stars:

increasing αMLT means deeper convection zones. For fully convective stars or stars
with deep convective envelopes (ri/R < 0.7) the mixing-length parameter has almost
no influence.

Density

The density profiles in the convective zones of the star (where convective energy flux
according to figure 4.3 is not zero) are shown in figure 4.4.
Strong variations in the order of magnitude are visible. This is due to the fact

that for high mass stars with thin convective envelopes only the outer zone of the
star where density is low is shown.
The αMLT dependency is rather weak for low mass stars, for stars with M ≥

1.0M�, where the density variation over the thin convective envelope is shown, the
influence of the mixing-length parameter is stronger.

4.1.2 Overall values

Total energy flux

Figure 4.5 shows the temporal variation of energy flux, i.e. L/4πR2 at three different
mixing-length parameters for different masses. It is visible that the flux increases
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with increasing mass. The difference in flux between the lowest and the highest mass
stars in my study is about two orders of magnitude. The age of the star and the
mixing-length parameter do not have such a big influence as the flux is in the same
order of magnitude over the whole range. It differs by a maximum of 30 % in the
ages-range (for 1.5 M�) and a maximum of 20 % in the αMLT-range (for 1.0 M�).

Average Density

Figure 4.6 shows the temporal evolution of average density of the convective zone
of the stars at three different mixing-length parameters. The average density in
the convective zone decreases with higher masses. This is due to the fact that the
convective zone shrinks and the density is lower in the outer regions of the star (cf.
figure 4.4).
The age has an influence in the average density. For the low mass stars the dif-

ference (about 50 % difference over the whole age-range for 0.1 M�) occurs because
the star contracts with age. The mixing-length parameter has basically no influence
for those stars. For higher mass, i.e. partially convective stars, the difference in age
(about 90 % difference for 1.5 M�) and mixing-length parameter (about two orders
of magnitude difference for 1.5 M�) occur because the convection zone width differs
with those two quantities (cf. figure 4.3).

4.2 Spatial distribution of efficiency factor

Figures 4.7a-4.7c show the spatial distribution of the integrand in efficiency factor
Fr according to equation (3.5) for αMLT = 2.0. As shown in section 4.1 the influence
by the mixing-length parameter is less important than the influence of mass and age
which is why these plots are shown for an intermediate value. Also shown are the
integrated values for the efficiency factor F . For the other mixing-length parameters
the plots do not differ in qualitative way.
One can observe that every star in figure 4.7a (i.e. stars with M < 0.3 M�) has a

nonzero magnetic energy density for its whole r-range which means that it is fully
convective (cf. section 4.1.1).
Furthermore one can observe that the magnetic fields in fully convective stars

and in the outer convective zones of partially convective stars behave similar: they
increase until they reach a maximum within the inner region of their convective zones
and then decrease monotonically until they reach zero at the outer boundaries.
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One observes that the oldest stars of M = 0.35 M� are still fully convective but
have a minimum at about 0.3 Rstar.
Moreover for stars with M ≥ 0.35 M� convective cores can be observed which

always vanish at ages of 1010 years but do not shrink monotonously. If any magnetic
field was produced inside these convective cores it would be shielded by the radiation
zone between convective core and convective envelope and therefore it is not visible
at the surface. For this reason I neglected these region for the integration.
The integrated efficiency factors for fully convective stars are in the range between

0.27 (for 0.35 M� and 109 years) and 0.43 (0.1 M� and 109 years) and for stars with
convective envelopes in the range between 0.1 (1.5 M� and 107 years) and 0.35
(1.5 M� and 1010 years). While the efficiency factors decrease rapidly with higher
masses at low ages, they increase for M & 1.0 M� with mass for higher ages (& 109

years).

4.3 Magnetic Energy Densities
The assignment of star models to spectral types is done via the effective temperature
of the star as provided by MESA star. Figure 4.1 shows the calibration I used which
temperature is assigned to which spectral type according to [13]. The assignment
which masses are assigned to which spectral tpe is shown in table 4.1.

Mass range [M�] Teff range [K] spectral types
0.1− 0.12 3089− 3268 M6, M5
0.13− 0.15 3308− 3491 M5, M4, M3
0.19− 0.27 3569− 3670 M3, M2
0.3− 0.6 3675− 4057 M2, M1, M0
0.7− 0.8 4293− 5134 K6, K5, K3, K2, K1
0.9− 1.1 5150− 6131 K1, K0, G9 – G0, F9
1.2− 1.55 5995− 7361 G1, G0, F9 – F0

Table 4.1: Assignment of spectral types to masses
The assignment of effective temperatures Teff to spectral types is done according to
the calibration used in [13] (cf. figure 4.2). The range in Teff are minimum and
maximum effective temperature in the respective mass range over the whole age-
and mixing-length parameter range.

In figure 4.8 the integrated efficiency factors are shown as a function of spectral
type. The range in the y-values represent the range of different magnetic field
strengths assigned to the same spectral type.
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Figure 4.1: Calibration of spectral types
The calibration is taken from [13].

It is visible that the efficiency factors F basically all are in the range between 0.1
and 0.5 and the late type stars have larger values than the early type stars. This
supports the observations from section 4.2. Only for early F stars the efficiency
factor decreases below 0.1 (cf. figure 4.7c, 1.55 M�).

Figure 4.9 shows how the obtained magnetic energy densities according to equa-
tion 2.25 behave, in the upper plot as a function of spectral type and in the lower
plot as a function of mass for different ages and αMLT. In the lower plot a young, an
intermediate, and an old age as well as two intermediate mixing-length parameters
are shown.

It is visible that the energy densities are higher for low mass, i.e. fully convective
stars (M < 0.35 M�, spectral type M1), and decrease for higher masses. The
maximum magnetic energy density which is reached in this study is 0.81 MJ/m3 for
M = 0.15 M�, 1010 years and αMLT = 2.4 (spectral type M3). For high mass stars
(M ≥ 0.6 M�) the maximum magnetic energy density is 0.28 MJ/m3 forM = 0.9 M�,
3× 108 years and αMLT = 2.4 (spectral type K0).
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4.4 Comparison with Observations

4.4.1 Measuring stellar magnetic fields

Stellar magnetic fields are measured by observation of the splitting of absorption
lines due to the Zeeman effect. There are several problems in measuring magnetic
fields. The major ones are discussed here.
One issue is that in cool stars most of the absorption lines are molecular lines.

Those molecular lines are mostly weakly sensitive to magnetic fields. However some
of them, like the diatomic molecules FeH and CrH, are sensitive but the so called
Landé g-factors, which are measures for the sensitivity to magnetic fields, are poorly
known for molecular lines. [9, 23]
Another issue is the fact that low mass stars are very faint which is why large

telescopes are needed in order to obtain detailed spectra for those stars. In con-
trary, high mass stars are brighter but their magnetic fields are weak and therefore
broadening mechanisms due to turbulence and rotational effects become important.
Since the scaling law doesn’t account for the geometry of the field I compared the

obtained fields with the unpolarized integrated flux measurements Bf (the so called
Stokes I component of the field) where the so called filling factor f is the ratio of
the surface which is covered by starspots.

4.4.2 Comparison

Figure 4.10 shows a comparison of the computation with data for the magnetic flux
Bf at the stellar surface which are published in [1, 16, 20, 22, 24, 26, 28–30, 33]
and collected in [23]. The assignment of star models to spectral types is done via
the effective temperature of the star as provided by MESA star (cf. figure 4.2). The
x-errorbars account for the fact that star models with different magnetic fields are
assigned to the same spectral types. Errors for y-values are obtained from published
data if given. If no positive but negative error is given, the value is an upper bound
for the field.
The blue line describes the correlation between scaling law and data if B/Bs = 3.5

is assumed, i.e. a factor of 1
3.5 of the produced magnetic field is visible at the surface.

[8]
With that assumption the scaling law fits within one order of magnitude. It is

visible that magnetic fields of early type stars are lower than those of late type
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stars but still in a comparable range. The magnetic field measurements of most
of the early type stars are lower compared with the scaling law (spectral type K,
G and F). This is due to the fact that they are mostly slow rotators for which
the scaling law is not applicable (cf. section 2.3.3). As described in section 4.4.1
it is difficult to observe magnetic fields in fast rotating high mass stars since the
rotational broadening becomes important.
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Figure 4.2: Temperature profiles
The upper two rows show the variation in mass at the same age, the lower two rows
show the difference in age at the same mass for two different masses. The profiles
are shown for three different mixing-length parameters. The title provides mass and
age of the star as well as the effective temperature for αMLT = 2.0.
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Figure 4.3: Convective energy fluxes
The fluxes are normalized by the flux at the outer boundary of the star. The upper
two rows show the variation in mass at the same age, the lower two rows show
the difference in age at the same mass for two different masses. The profiles are
shown for three different mixing-length parameters. For partially convective stars
only the convective envelope is shown as the flux in the core is higher than in the
envelope (because of the r−2-dependency of the flux) and therefore distorts the plot
(cf. figure 4.7c, where insets are needed to compare the convective envelopes). 27
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Figure 4.4: Density profiles
The upper two rows show the variation in mass at the same age, the lower two rows
show the difference in age at the same mass for two different masses. The profiles are
shown for three different mixing-length parameters. For partially convective stars
only the convective envelopes are shown.

28



4.4 Comparison with Observations

6 6.5 7 7.5 8 8.5 9 9.5 10
age [log(yrs)]

4.6

4.8

5.0

5.2

5.4

5.6

5.8

q 0
[e

rg
s−

1
cm
−

2
]

×109 M = 0.1 M�

α = 1.6

α = 2.0

α = 2.4

6 6.5 7 7.5 8 8.5 9 9.5 10
age [log(yrs)]

1.40

1.42

1.44

1.46

1.48

1.50

1.52

1.54

q 0
[e

rg
s−

1
cm
−

2
]

×1010 M = 0.6 M�

α = 1.6

α = 2.0

α = 2.4

6 6.5 7 7.5 8 8.5 9 9.5 10
age [log(yrs)]

5.0

5.5

6.0

6.5

7.0

q 0
[e

rg
s−

1
cm
−

2
]

×1010 M = 1.0 M�

α = 1.6

α = 2.0

α = 2.4

6 6.5 7 7.5 8 8.5 9 9.5 10
age [log(yrs)]

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

q 0
[e

rg
s−

1
cm
−

2
]

×1011 M = 1.5 M�

α = 1.6

α = 2.0

α = 2.4

Figure 4.5: Energy flux at the outer boundary
The flux is calculated with the luminosity via q0 = L0/4πR2 where L0 is the lumi-
nosity at the outer boundary of the star.
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Figure 4.6: Average density
The average is taken over the convective envelope if the star is partially convective.
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Figure 4.7a: Spatial distribution of Fr for 0.1 M� ≤M ≤ 0.3 M�
The value Fr is calculated according to equation 3.5. The values for F in the title
are integrated values according to equation (3.6) for the ages 106, 107, 108, 109 and
1010 years. The mixing-length parameter is αMLT = 2.0.
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Figure 4.7b: Spatial distribution of Fr for 0.35 M� ≤M ≤ 0.8 M�
The value Fr is calculated according to equation 3.5. The values for F in the title
are integrated values according to equation (3.6) for the ages 106, 107, 108, 109 and
1010 years. The mixing-length parameter is αMLT = 2.0.
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Figure 4.8: Efficiency factors as a function of spectral type
The values are taken from integration according to equations (3.5) and (3.6). y-
ranges account for the fact that stars of different mass, age, and mixing-length
parameter and therefore different F are assigned to the same spectral type. The
assignment of model to spectral type is made via the effective temperature according
to figure 4.2.
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Figure 4.9: Magnetic energy densitiy
In the upper plot it is shown as a function of spectral type, in the lower plot as a
function of mass for three different ages and two mixing-length parameters. For fohm
a value of one is assumed. The magnetic energy densities are calculated according
to scaling law (2.26). y-ranges in the upper plot account for the fact that stars of
different mass, age, and mixing-length parameter and therefore different Emag are
assigned to the same spectral type. The assignment of model to spectral type is
made via the effective temperature according to figure 4.2.
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Figure 4.10: Comparison with data from [23]
The x-values are the computed values for magnetic energy density according to the
scaling law (2.25). The x-errorbars are obtained by assigning models with different
resulting magnetic energy densities to the same spectral type.
y-data and errors are from observations published in [1, 16, 20, 22, 24, 26, 28–30, 33]
and collected in [23].
The blue solid line is the prediction Emag = (xBs)2

2µ0
, whereas the factor x = 3.5 is an

assumption according to [8]. The dashed lines account for values of x = 1.5 (upper
line) and x = 5.5 (lower line).
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5 Discussion

5.1 Meaning of the results

The comparison in section 4.4.2 shows that the scaling law is valid as it predicts
magnetic fields for stars which fit the observed fields within one order of magnitude.
Hereby I confirm the results of [8] even though I found smaller values for the efficiency
factor F . While they were found to lie in the range 0.69–1.22 I found a range of
0.1–0.43 whereupon I analysed stars in a wider mass range (0.1–1.55 M� against
0.25–0.7 M�). A possible reason for this is that I used a different stellar evolution
code which provides different profiles for the quantities like temperature and density.
The scaling law predicts a maximum value for the magnetic energy density inside
stars which can be produced by the dynamos of 0.81 × 106 J/m3 which corresponds
to a field of 1.4 T. The maximum value for high mass stars (M ≥ 0.6 M�) is
0.28 × 106 J/m3 (corresponding field of 0.8 T). It is questionable what part of this
magnetic field can actually be observed.

I extended the analysis towards larger stars with masses of more than 1.0 M�

where the convective envelope is comparatively small. The dynamo processes in
these stars seem to be less effective at low ages but old stars in this mass range have
simmilar F values as M stars despite the shallow convection zone (cf. figure 4.8).
However, the scaling law predicts magnetic fields which are in the same order of
magnitude as the fields of M stars and the field decreases with increasing mass (cf.
figure 4.9).

The comparison with data also confirms the prediction that the scaling law is only
applicable to fast rotators since slow rotators are not saturated. The reason that
magnetic fields of some M stars in figure 4.10 are low compared to the scaling law
(less than one kG) could be that these stars are old and therefore slow rotating in
contrast to young, fast rotating M dwarfs which show magnetic fields of a few kG.
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5 Discussion

5.2 Open questions
For stars which are not fully convective I observed convective cores (cf. figures 4.7b
and 4.7c) whose convective flux strength increases with mass. According to figure 2.1
convective cores are expected only in stars of spectral type A and earlier, here they
occur in spectral type early-M which are about one order of magnitude less massive.
Since the magnetic field which would be produced in these cores would be shielded
by the radiative zone I neglect the cores in this study. However, it remains an open
question if these cores are physically significant or a numerical issue.
An important question is which factor of the magnetic field is observable at the

surface. In the plot 4.10 I adopted the assumption by [8] that the factor x = B/Bs

is 3.5 but it is unlikely that a fixed factor can be assumed.

38



6 Conclusion

I used a stellar evolution code, MESA star, to compute properties inside stars of
different masses and ages. These calculations were used to compute magnetic fields
according to a certain scaling law (2.25). In doing this I extended a former analysis
of the same scaling law [8] towards higher masses.
My study confirms the results of the former analysis but also makes some pre-

dictions of the magnetic energy densities in higher mass stars which are lower by a
factor of three to four compared with those of late type stars. The very thin convec-
tive envelopes in G and F stars still can produce magnetic fields in the kG-regime
which are comparable to those of fully convective M stars.
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